2 글 보임 - 1 에서 2 까지 (총 2 중에서)
-
글쓴이글
-
2023년 10월 7일 16:58 #100299
김태하참가자model = tf.keras.models.Sequential([ tf.keras.layers.Conv2D( 32, (3, 3), padding="same", activation="relu", input_shape=(64, 64, 3) ),# 컨볼루셔널 레이어 1 tf.keras.layers.MaxPooling2D( (2, 2) ), tf.keras.layers.Conv2D( 64, (3, 3), padding="same", activation="relu"),# 컨볼루셔널 레이어 2 tf.keras.layers.MaxPooling2D( (2, 2) ), tf.keras.layers.Dropout(0.2), #노드 20% 지우기, overfitting 예방 tf.keras.layers.Conv2D( 128, (3, 3), padding="same", activation="relu"),# 컨볼루셔널 레이어 3 tf.keras.layers.MaxPooling2D( (2, 2) ), tf.keras.layers.Flatten(), tf.keras.layers.Dense(128, activation="relu"), tf.keras.layers.Dense(1, activation="sigmoid"), ])
model.summary()
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy']) model.fit(train_ds, validation_data=val_ds, epochs=5 ) -->
Model: "sequential_13" _________________________________________________________________ Layer (type) Output Shape Param # ================================================================= conv2d_39 (Conv2D) (None, 64, 64, 32) 896 max_pooling2d_39 (MaxPooli (None, 32, 32, 32) 0 ng2D) conv2d_40 (Conv2D) (None, 32, 32, 64) 18496 max_pooling2d_40 (MaxPooli (None, 16, 16, 64) 0 ng2D) dropout_13 (Dropout) (None, 16, 16, 64) 0 conv2d_41 (Conv2D) (None, 16, 16, 128) 73856 max_pooling2d_41 (MaxPooli (None, 8, 8, 128) 0 ng2D) flatten_13 (Flatten) (None, 8192) 0 dense_26 (Dense) (None, 128) 1048704 dense_27 (Dense) (None, 1) 129 ================================================================= Total params: 1142081 (4.36 MB) Trainable params: 1142081 (4.36 MB) Non-trainable params: 0 (0.00 Byte) _________________________________________________________________ Epoch 1/5
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
<ipython-input-30-afe8aae220b5> in <cell line: 18>() 16 17 model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy']) ---> 18 model.fit(train_ds, validation_data=(val_ds), epochs=5 )
1 frames /usr/local/lib/python3.10/dist-packages/keras/src/engine/training.py in tf__train_function(iterator) 13 try: 14 do_return = True ---> 15 retval_ = ag__.converted_call(ag__.ld(step_function), (ag__.ld(self), ag__.ld(iterator)), None, fscope) 16 except: 17 do_return = False
ValueError: in user code:
File "/usr/local/lib/python3.10/dist-packages/keras/src/engine/training.py", line 1338, in train_function * return step_function(self, iterator) File "/usr/local/lib/python3.10/dist-packages/keras/src/engine/training.py", line 1322, in step_function ** outputs = model.distribute_strategy.run(run_step, args=(data,)) File "/usr/local/lib/python3.10/dist-packages/keras/src/engine/training.py", line 1303, in run_step ** outputs = model.train_step(data) File "/usr/local/lib/python3.10/dist-packages/keras/src/engine/training.py", line 1080, in train_step y_pred = self(x, training=True) File "/usr/local/lib/python3.10/dist-packages/keras/src/utils/traceback_utils.py", line 70, in error_handler raise e.with_traceback(filtered_tb) from None File "/usr/local/lib/python3.10/dist-packages/keras/src/engine/input_spec.py", line 253, in assert_input_compatibility raise ValueError(
ValueError: Exception encountered when calling layer 'sequential_13' (type Sequential). Input 0 of layer "conv2d_39" is incompatible with the layer: expected min_ndim=4, found ndim=0. Full shape received: () Call arguments received by layer 'sequential_13' (type Sequential): • inputs=tf.Tensor(shape=(), dtype=float32) • training=True • mask=None 라고 오류가 나오는데 어떻게 해야 할까요?
-
글쓴이글
2 글 보임 - 1 에서 2 까지 (총 2 중에서)
- 답변은 로그인 후 가능합니다.