3 글 보임 - 1 에서 3 까지 (총 3 중에서)
-
글쓴이글
-
2023년 5월 28일 06:57 #84857
코딩하러왔음참가자model= tf.keras.Sequential([ tf.keras.layers.DenseFeatures(feature_columns), tf.keras.layers.Dense(128, activation='relu'), tf.keras.layers.Dense(64, activation='relu'), tf.keras.layers.Dropout(0.2), tf.keras.layers.Dense(1, activation='sigmoid'), ])
model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['acc'])
ds_batch = ds.batch(32)
model.fit(ds_batch, shuffle=True, epochs=20) 여기에서 아래와 같은 오류 코드가 나왔습니다.
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
<ipython-input-95-a9085c0c425c> in <cell line: 1>() 1 model= tf.keras.Sequential([ ----> 2 tf.keras.layers.DenseFeatures(feature_columns), 3 tf.keras.layers.Dense(128, activation='relu'), 4 tf.keras.layers.Dense(64, activation='relu'), 5 tf.keras.layers.Dropout(0.2),
3 frames /usr/local/lib/python3.10/dist-packages/keras/feature_column/base_feature_layer.py in _normalize_feature_columns(feature_columns) 231 for column in feature_columns: 232 if column.name in name_to_column: --> 233 raise ValueError( 234 "Duplicate feature column name found for columns: {} " 235 "and {}. This usually means that these columns refer to "
ValueError: Duplicate feature column name found for columns: IndicatorColumn(categorical_column=VocabularyListCategoricalColumn(key='Sex', vocabulary_list=('male', 'female'), dtype=tf.string, default_value=-1, num_oov_buckets=0)) and IndicatorColumn(categorical_column=VocabularyListCategoricalColumn(key='Sex', vocabulary_list=('male', 'female'), dtype=tf.string, default_value=-1, num_oov_buckets=0)). This usually means that these columns refer to same base feature. Either one must be discarded or a duplicated but renamed item must be inserted in features dict. --------------------------------------------------------------------------- 강의대로 다 잘 따라했고 틀린 철자도 없는데 왜이런건가요ㅠ
어떻게 고쳐야 하는 건가요?????
-
글쓴이글
3 글 보임 - 1 에서 3 까지 (총 3 중에서)
- 답변은 로그인 후 가능합니다.