3 글 보임 - 1 에서 3 까지 (총 3 중에서)
-
글쓴이글
-
2022년 7월 23일 17:46 #39303
유용환참가자두번째 강의를 따라 하고 실행시켰을때 결과가 똑같이 나오기는 하는데 추가로
Epoch 1/5 Traceback (most recent call last): File "C:\Users108\Desktop\deep\deep learning\fash.py", line 23, in <module> model.fit(trainX, trainY, epochs=5) File "C:\Users108\AppData\Local\Programs\Python\Python310\lib\site-packages\keras\utils\traceback_utils.py", line 67, in error_handler raise e.with_traceback(filtered_tb) from None File "C:\Users108\AppData\Local\Temp\__autograph_generated_filets6yickf.py", line 15, in tf__train_function retval_ = ag__.converted_call(ag__.ld(step_function), (ag__.ld(self), ag__.ld(iterator)), None, fscope) ValueError: in user code:
File "C:\Users108\AppData\Local\Programs\Python\Python310\lib\site-packages\keras\engine\training.py", line 1051, in train_function * return step_function(self, iterator) File "C:\Users108\AppData\Local\Programs\Python\Python310\lib\site-packages\keras\engine\training.py", line 1040, in step_function ** outputs = model.distribute_strategy.run(run_step, args=(data,)) File "C:\Users108\AppData\Local\Programs\Python\Python310\lib\site-packages\keras\engine\training.py", line 1030, in run_step ** outputs = model.train_step(data) File "C:\Users108\AppData\Local\Programs\Python\Python310\lib\site-packages\keras\engine\training.py", line 890, in train_step loss = self.compute_loss(x, y, y_pred, sample_weight) File "C:\Users108\AppData\Local\Programs\Python\Python310\lib\site-packages\keras\engine\training.py", line 948, in compute_loss return self.compiled_loss( File "C:\Users108\AppData\Local\Programs\Python\Python310\lib\site-packages\keras\engine\compile_utils.py", line 201, in __call__ loss_value = loss_obj(y_t, y_p, sample_weight=sw) File "C:\Users108\AppData\Local\Programs\Python\Python310\lib\site-packages\keras\losses.py", line 139, in __call__ losses = call_fn(y_true, y_pred) File "C:\Users108\AppData\Local\Programs\Python\Python310\lib\site-packages\keras\losses.py", line 243, in call ** return ag_fn(y_true, y_pred, **self._fn_kwargs) File "C:\Users108\AppData\Local\Programs\Python\Python310\lib\site-packages\keras\losses.py", line 1787, in categorical_crossentropy return backend.categorical_crossentropy( File "C:\Users108\AppData\Local\Programs\Python\Python310\lib\site-packages\keras\backend.py", line 5119, in categorical_crossentropy target.shape.assert_is_compatible_with(output.shape)
ValueError: Shapes (32, 1) and (32, 10) are incompatible 이런 에러가 나오는데 왜 그런건가요
import tensorflow as tf import matplotlib.pyplot as plt
(trainX, trainY),(testX, testY) = tf.keras.datasets.fashion_mnist.load_data()
# print(trainX) # print(trainY)
class_name = ['T-shirt/top', 'Trouser', 'Pullover', 'Dress', 'Coat', 'Sandal', 'Shirt', 'Sneaker', 'Bag', 'Ankleboot' ]
model = tf.keras.Sequential([ tf.keras.layers.Dense(128, input_shape=(28,28), activation="relu"), tf.keras.layers.Dense(64, activation="relu"), tf.keras.layers.Flatten(), tf.keras.layers.Dense(10, activation="softmax"), ])
model.summary()
model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy']) model.fit(trainX, trainY, epochs=5)
똑같이 따라했습니다.
-
글쓴이글
3 글 보임 - 1 에서 3 까지 (총 3 중에서)
- 답변은 로그인 후 가능합니다.