-
글쓴이글
-
2021년 2월 25일 19:05 #6856
Chagon Son참가자import tensorflow as tf
import matplotlib.pyplot as plt
import numpy as np(trainX, trainY), (testX, testY) = tf.keras.datasets.fashion_mnist.load_data()
trainX = trainX / 255.0
trainY = trainY / 255.0trainX = trainX.reshape ( (trainX.shape[0], 28, 28, 1))
trainY = testX.reshape ( (testX.shape[0], 28, 28, 1))class_names = ['T-shirt/top', 'Trouser', 'Pullover', 'Dress', 'Coat', 'Sandal', 'Shirt', 'Sneaker', 'Bag', 'Ankle boot']
#print(trainX[0])
#print(trainX.shape)#print(testX[0])
#print(testX.shape)#print(trainY)
#plt.imshow(trainX[1])
#plt.gray()
#plt.colorbar()
#plt.show()model = tf.keras.Sequential([
tf.keras.layers.Conv2D( 32, (3, 3), padding="same", activation="relu", input_shape=(28, 28, 1) ),
tf.keras.layers.MaxPooling2D( (2,2) ),
# tf.keras.layers.Dense(128, input_shape=(28, 28), activation="relu"),
tf.keras.layers.Flatten(),
tf.keras.layers.Dense(64, activation="relu"),
tf.keras.layers.Dense(10, activation="softmax"),])
model.summary()
model.compile(loss="sparse_categorical_crossentropy", optimizer="adam", metrics=['accuracy'])
print(trainX[0])
model.fit(trainX, trainY, validation_data=(testX, testY), epochs=5)
score = model.evaluate(testX, testY)
제가 강의에 따라서 작성한 코드입니다.
실행하면 아래와 같은 에러가 발생합니다.
무엇이 문제인가요?
<hr />
Model: "sequential_10"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
conv2d_9 (Conv2D) (None, 28, 28, 32) 320
_________________________________________________________________
max_pooling2d_9 (MaxPooling2 (None, 14, 14, 32) 0
_________________________________________________________________
flatten_10 (Flatten) (None, 6272) 0
_________________________________________________________________
dense_21 (Dense) (None, 64) 401472
_________________________________________________________________
dense_22 (Dense) (None, 10) 650
=================================================================
Total params: 402,442
Trainable params: 402,442
Non-trainable params: 0
_________________________________________________________________
AAAAAAAAAAAAAAAAAAAAAAAAAA---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
<ipython-input-11-968f22cba899> in <module>()
46 print("AAAAAAAAAAAAAAAAAAAAAAAAAA")
47
---> 48 model.fit(trainX, trainY, validation_data=(testX, testY), epochs=5)
49
50 score = model.evaluate(testX, testY)3 frames
/usr/local/lib/python3.7/dist-packages/tensorflow/python/keras/engine/data_adapter.py in _check_data_cardinality(data)
1527 label, ", ".join(str(i.shape[0]) for i in nest.flatten(single_data)))
1528 msg += "Make sure all arrays contain the same number of samples."
-> 1529 raise ValueError(msg)
1530
1531ValueError: Data cardinality is ambiguous:
x sizes: 60000
y sizes: 10000
Make sure all arrays contain the same number of samples.<hr />
-
글쓴이글
- 답변은 로그인 후 가능합니다.